

Directed Inspection & Maintenance

Methane to Markets Partnership Workshop Technology Transfer Workshop

October 4, 2010, Moscow, Russia David Picard

Leak Characteristics

- Contribute significantly to total CH₄ emissions at natural gas facilities.
- Only a few percent of the components actually leak.
- Most of the leakage is usually from just a few big leakers.
- Different types of components have different leak potentials and wear out at different rates.
- Components in sour or odorized service tend to leak less than those in sweet or unodorized service.

Fugitive Emissions

- Distribution of opportunities is skewed
- Few sources are responsible for majority of emissions-focus efforts on these sources first

Opportunities are Greatest at Older Facilities: Average Emissions vs Age

Reasons for Big Leaks

- Flaws, improper installation, damage, and progressive deterioration.
- Severe/demanding applications coupled with high cost or difficulty of repairs.
- Lack of leak checks after maintenance activities.
- Unnoticed leaks because they occur in difficult-toaccess, low-traffic, crowded or noisy areas.
- Lack of measurement data to build a business case.

What is Normal Practice?

- Perform a leak check (using a bubble test or hand held gas sensor) on equipment components when first installed and after inspection and maintenance.
- Thereafter, leaks are detected by:
 - Area or building monitors.
 - Personal monitors.
 - Olfactory, audible or visual indicators.
- Leaks are fixed if it is easy to do or they pose a safety concern.
- Unmanned facilities get less attention than manned facilities.
- Priority following a facility turnaround is to get it back online rather than ensure all affected components have been leak checked.

What is Directed Inspection & Maintenance or DI&M?

- Fugitive losses can be reduced dramatically by implementing a systematic leak detection and repair program
- Natural Gas STAR refers to this practice as Directed Inspection and Maintenance (DI&M):
 - Practicable ongoing program to identify & fix leaks.
 - Focus efforts on the areas that offer the greatest opportunities.
 - Use the DI&M results to determine where best to look.
 - Only fix leaks that are cost-effective to repair or pose a safety, health or environmental risk.
 - Adapt to each company's and facility's needs and circumstances.
 - Utilizes various options for leak detection & quantification.

Infrared Leak Imaging
Camera

What are the Benefits?

- Resource conservation.
- Increased revenue.
- Cost-effective
- Improved system reliability.
 - Reduced downtime.
 - Potentially reduced maintenance costs through early detection of problems.
- Safer work place.
- Improved environmental performance.
- Best-in-Class recognition.

Where Should Efforts be Focused?

Sample Leak Statistics for Gas Transmission Facilities							
Source	Number of	Leak Frequenc	Average Emissions	Percent of Component	Contribution to Total	Relative Leak	
	Sources	y	(kg/h/source	Population	Emissions (%)	Potential	
Pressurized Station or Unit Blowdown System	219	59.8	3.41E+00	0.131	53.116	7616	
Compressor Seal – Centrifugal	103	64.1	1.27E+00	0.062	9.310	2838	
Compressor Seal – Reciprocating	167	40.1	1.07E+00	0.100	12.764	2400	
Pressure Relief Valve	612	31.2	1.62E-01	0.366	7.062	362	
Open-Ended Line	928	58.1	9.18E-02	0.555	6.070	205	
Orifice Meter	185	22.7	4.86E-02	0.111	0.641	109	
Control Valve	782	9	1.65E-02	0.468	0.919	37	
Pressure Regulator	816	7	7.95E-03	0.488	0.462	18	
Valve	17029	2.8	4.13E-03	10.190	5.011	9	
Connector	145829	0.9	4.47E-04	87.264	4.644	1	
Other Flow Meter	443	1.8	9.94E-06	0.265	0.000	0.02	

Suggested Monitoring Frequencies

Component Specific Suggested Leak Monitoring Frequencies					
Source	Type of Component	Service	Application	Frequency	
Category					
Process	Connectors and	All		Immediately after	
Equipment	Covers			any adjustments	
				and once every 5	
				years thereafter.	
	Control Valves	Gas/Vapour/LPG		Annually.	
	Block Valves –	Gas/Vapour/LPG	All	Annually.	
	Rising Stem				
	Block Valves –	Gas/Vapour/LPG	All	Once every 5	
	Quarter Turn			years.	
	Compressor Seals	All	All	Quarterly.	
	Pump Seals	All	All	Quarterly.	
	Pressure Relief	All	All	Annually.	
	Valves				
	Open-ended Lines	All	All	Annually.	
	Emergency Vent and	All	All	Quarterly.	
	Blowdown Systems ¹				
Vapour Collection	Tank Hatches	All	All	Quarterly.	
Systems	Pressure-Vacuum	All	All	Quarterly.	
	Safety Valves				

How Do You Detect the Leaks?

- Screening find the leaks
 - Soap bubble screening
 - Electronic screening (sniffer)
 - Toxic Vapor Analyzer (TVA)
 - Organic Vapor Analyzer (OVA)
 - Ultrasound Leak Detection
 - Acoustic Leak Detection
 - Infrared LeakDetection/Imaging

How Do You Measure the Leaks?

- Evaluate the leaks detected measure results
 - High Volume Sampler
 - TVA (correlation factors)
 - Rotameters
 - CalibratedBag
 - EngineeringMethod

Leak Measurement Using High Volume Sampler

Summary of Screening and Measurement Techniques

Summary of Screening and Measurement Techniques				
Instrument/ Technique	Effectivenes s	Approximate Capital Cost		
Soap Solution	**	\$		
Electronic Gas Detector	*	\$\$		
Acoustic Detector/ Ultrasound Detector	**	\$\$\$		
TVA (Flame Ionization Detector)	*	\$\$\$		
Calibrated Bagging	*	\$\$		
High Volume Sampler	***	\$\$\$		
Rotameter	**	\$\$		
Infrared Leak Detection	***	\$\$\$		

^{* -} Least effective at screening/measurement

^{*** -} Most effective at screening/measurement

^{\$ -} Smallest capital cost

^{\$\$\$ -} Largest capital cost

Example: Economic Analysis of DI&M at Compressor Stations

Repair the Cost-Effective Components						
Component	Value of lost gas ¹ (\$)	Estimated repair cost (\$)	Payback (months)			
Plug Valve: Valve Body	29,498	200	0.1			
Union: Fuel Gas Line	28,364	100	0.1			
Threaded Connection	24,374	10	0.0			
Distance Piece: Rod Packing	17,850	2,000	1.4			
Open-Ended Line	16,240	60	0.1			
Compressor Seals	13,496	2,000	1.8			
Gate Valve	11,032	60	0.1			

^{1 –} Based on \$7 per thousand cubic feet gas price Source: "Cost-effective emissions reductions through leak detection, repair". Hydrocarbon Processing, May 2002

Industry Experience – Targa Resources (U.S. Processing Company)

- Surveyed components in two processing plants:
 23,169 components
- Identified leaking components: 857 (about 3.6%)
- Repaired 80 to 90% of the identified leaking components
- Annual methane emissions reductions:
 5.6 million m³/year
- Annual savings: \$1,386,000/year (at \$250/thousand m³ or \$7/Mcf)

Source: Targa Resources

Industry Experience – Kursk Natural Gas Distribution Company (Russian)

- Hired Heath Consultants to survey 47 regulator stations in November 2005
 - Surveyed 1,007 components
 - Found 94 leaks
- Using Hi Flow Sampler, quantified leaks as 900,000 m³ per year
 - Initial investment of \$30,000
 - Produced revenue from verified carbon credits
- So successful, Kurskgas expanded study beyond initial 47 stations and covered over 3,300 components

Summary: Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying costeffective repairs
- A relatively small number of large leaks cause most fugitive emissions
- The business of leak detection is changing dramatically with new technology like infrared cameras that make DI&M faster and easier

- Greenhouse Gas Observing Satellite (GOSAT)
 - Joint project of JAXA (Japan Aerospace Exploration Agency), MOE (Ministry of the Environment) and NIES (National Institute for Environmental Studies)
- Observes concentrations of GHGs from orbit
 - Passive observation system
 - Calculates gas concentration using reflected light radiated by the sun that is absorbed by GHGs
 - Wide range of wavelengths (near infrared to thermal infrared)
 - Projected launch: early 2009

The concept of the natural gas pipeline leak detection system using GOSAT

Step-1:Satelite Pipeline leak observation

Step-2:Data transmission and analysis

Step-3:Ground exploration based on results of analysis

Step-4:Mitigation of problems

Wrap up

- Questions?
- Additional Information
 - http://www.epa.gov/gasstar/tools/recommended.
 html
 - http://www.capp.ca/getdoc.aspx?DocId=116116&DT=PDF
- Thank you
- David Picard, Clearstone Engineering, Ltd
- dave.picard@clearstone.ca